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Abstract

The classical Eisenstein series are the first concrete example of a modular form. Their automor-
phic analogue plays a similarly central role to the theory of automorphic forms and automorphic
representations. In fact it was whilst computing coefficients of the Eisenstein series functional equa-
tions that Langlands formed his famous conjectures [DS15, Ch VI. Funktorialität in der Theorie
der automorphen Formen, Sec. 5 Wieder Princeton]. This thesis is an introduction to the theory of
Eisenstein series and automorphic representations with a particular focus on how constant terms
can be used to collect information about the zeroes and poles of Eisenstein series.
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Introduction

Motivation

The goal of this thesis is to exposit some of the results in the theory of Eisenstein series and give
some example computations. This introduction will attempt to motivate these computations, by
contextualising them historically and elaborating on some of the conjectures that form modern
work.

There are many surveys and books on the Langlands program, class field theory and modern
topics in number theory that this introduction is indebted to. Some exemplars are [FGKP16,
BCDS+04] for longer treatments, in particular the statements of the conjectures are most clearly
stated in Cogdell’s chapters in [BCDS+04]. Shorter surveys are [Gel84,Lan,Lan89,Art81].

0.0.1 From Ancient to Modern

We follow the wonderful exposition in [Wei15] and [Cond]. A problem that Pythagoras could have
understood is “which positive integers are the sum of two squares”. In 1640 Fermat answered
this question, he first reduces the question to when is a prime the sum of two squares. Thus the
problem is immediately reformulated as a problem about congruences mod a prime p, “when does
there exist a solution to a2 + b2 ≡ 0 (mod p)”, or what’s the same, by dividing out b2, “when is
there a solution to x2 + 1 ≡ 0 (mod p)”. Fermat proved:

Theorem 0.1. Let p be an odd prime. Then x2 + 1 ≡ 0 (mod p) has a solution if and only if
p ≡ 1 (mod 4).

Recall the Legendre symbol, for p, q odd and non-equal primes we have

(
q

p

)
..=

1, there is a solution to x2 − q ≡ 0 (mod p)

−1, else
.

Then the theorem of Fermat was generalised by Gauss in 1801 to his reciprocity law:

Theorem 0.2. For p, q odd and non-equal primes,(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
2 .

Having a solution mod a prime is the same as asking whether the polynomial splits mod that
prime. The natural question is then: Given a monic irreducible polynomial with integral coefficients
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can we determine by congruences whether it splits mod a prime. Gauss’s reciprocity is a solution
to this problem for polynomials of the form f(x) = x2 − q for q odd prime.

Remark 0.3. The odd limitation is for brevity here and of course can be lifted.

Recall that if f(x) ∈ Z[x] is monic and irreducible then there is a unique minimal field F in
which it factors as linear polynomials, called the splitting field. The Galois group of f(x) is then
defined to be Gal(F/Q). Class field theory is a solution to problem above when this Galois group
is Abelian. To explain we need to introduce the standard algebraic number theory setup.

Let Q ⊆ K be an extension of number fields, with respective rings of integers Z ⊆ OK and let
p be a prime in Z hence (p) is a prime ideal of Z and let

OK(p) =
∏
i

Pei
i ,

be the prime decomposition in OK . Then (p) splits in OK if for every i we have ei = 1 (this
is being unramified) and OK/Pi

∼= Z/(p). The splitting of primes is related to the splitting of
polynomials by the following theorem

Theorem 0.4 ( [Lan94], Prop. 26). If f ∈ Z[x] monic and irreducible and for α ∈ Q̄ we have
f(α) = 0 then for K = Q(α) with finitely many exceptions (of p) f is split mod p if and only if
(p) splits in OK .

Hence to answer when monic irreducible integral polynomials split by congruences it will be
necissary to know when prime ideals split over such extensions. Every field extension L/K has a
Galois closure, that is an extension L′/L of minimal degree such that L′ is Galois over K.

Lemma 0.5 ( [Neu02], §8, Ex. 4). A prime ideal of OK is split in OL if and only if it is split in
OL′ .

Thus we lose nothing by considering only Galois extensions of fields. In 1853 Kronecker con-
structed an extension of number fields K ′/K whose Galois group is isomorphic to the ideal class
group of K, Cl(K) ∼= Gal(K ′/K), a so called (by Weber) “class field” for K. Kronecker would
go on to make several conjectures that would form the heart of class field theory, for instance,
he conjectured that a Galois extension of Q is determined by the primes of Z that split over that
extension. This was solved by Bauer in 1916:

Theorem 0.6 ( [Cond], Thm. 2.6). Let L1, L2 be finite extensions of a number field K, then
L1 = L2 if and only if the primes of OK that split in OL1 is equal to the set of primes that split
in OL2 .

However, there was no systematic way of finding which primes split over the extension. Takagi
in 1920 made huge progress on this and it was to be made even more explicit finally by Artin in
1927. Together their work proves something similar to “the main theorem” of class field theory:

Theorem 0.7 ( [Wei15], Thm. 3.2.1). Let K/Q be an Abelian and Galois extension. There is an
ideal f = (m) ⊆ OQ = Z such that for a prime p ∈ Z the ideal (p) is split in OK if p ≡ 1 (mod m).

i.e. an explicit solution to the splitting of primes via congruence relations. Thus global class
field theory was “solved”, immediately the natural question was raised, what happens in the non-
Abelian extensions of number fields. The (global) Langlands conjectures (amongst other things)
can be viewed as an attempt to answer this question.
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Another direction that people were interested in was the extensions of local fields, as opposed
to number fields. It was Hilbert who introduced in 1897 the use of the p-adic numbers, in spirit
if not in name, he wrote congruences of arbitrary powers of primes. Let ν be a place of Q, then
define the ν-adic Hilbert symbol for a, b ∈ Q×

(a, b)ν ..=

1, a = x2 − by2 has a solution in Qν

−1, else
.

Theorem 0.8 (Product Formula). For all a, b ∈ Q×

∏
ν

(a, b)ν = 1.

This is equivalent to Gauss’s reciprocity law, however much more uniform to state, treating odd
and even primes in the same way, and not requiring any co-prime conditions. This moreover treats
finite and infinite places uniformly. Building on this work and using Artin reciprocity, Hasse, after
introducing the p-adic numbers in 1927, proved the first versions of local class field theory in 1930,
that is reciprocity for extensions of the local fields Qν . The statements here are technical, but a
key result is

Theorem 0.9 ( [Cond], Thm. 7.6). For a finite Abelian extension of local fields E/F there is a
surjection

F× → Gal(E/F ).

In particular the Galois group is a quotient of F×.

Note that the definition and proof of local class field theory depended logically on global class
field theory. That is the construction of this surjection uses the results of Artin and Takagi. Hasse
was able to prove later in 1933 the main results again but without recourse to global class field
theory. It lacked the explicit construction of the class fields however which was finally supplied in
1965 by Lubin and Tate.

What remained to do was supply a proof of global class field theory from local class field theory.
In pursuit of this task the machinery of the ideles and adeles was introduced. In this language
(part of) global class field theory can be restated as

Theorem 0.10 ( [Neu02], Ch. VI, §1 ,Prop. 1.3). Let the ideal class group of a number field K

be denoted ClK . Then there is a surjection

A×/K× A−→ ClK ∼= Gal(K ′/K),

where K ′ is the class field of K.

If we think about representations of these groups then this surjection gives a relation between
characters χ of A∗/K∗ and characters χ′ of Gal(K ′/K) by pulling back along A.
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A×/K× Gal(K ′/K)

C∗

A

χ χ′

Thus A can be thought of as providing a correspondence

{Maps A×/K× → C∗} → {Maps Gal(K ′/K) → C∗}.

One then observes that this can be rewritten as

{Maps GL1(A)/GL1(K) → GL1(C)} → {Maps Gal(K ′/K) → GL1(C)}.

This suggests the generalisation to

{Certain reps of GLn(A)/GLn(K)} → {Certain n-dimensional reps of Gal(K̄/K)}.

But according to Langlands [Lan89], who was inspired by the philosophy of Harish-Chandra, we
should treat all reductive groups the same, so Langlands conjectures that for any reductive linear
algebraic group G there is some correspondence

{Certain reps of G(A)/G(K)} → {Certain n-dimensional reps of Gal(K̄/K) that factor through G}.

These two sides of the correspondence are referred to as the “automorphic side” and the “Galois
side” respectively. The content that follows will be almost entirely on the automorphic side.

0.0.2 Harmonic Analysis

As we mentioned the work of Langlands was inspired by the work of Harish-Chandra in harmonic
analysis of Lie groups. Here we want to say something about the precursors to Langlands work in
this respect. The story starts with the Fourier transform for periodic functions. These of course
have ancient precursors in the ideas of the Pythagoreans and were “in the air” of the eighteenth
century. Fourier, around 1822, was first to conjecture that all functions should be decomposable
into elementary periodic functions. The base case is the Fourier transform on T = R/Z the circle,
for every f ∈ L2(T) we have that

f(x) =
∑
n∈Z

ane
2πinx, an ∈ C.

The important properties of the circle as a topological group are that it is Hausdorff, compact
and abelian. Locally compact Hausdorff ensures that Haar measures (left and right) exist, abelian
ensures that they agree and that the irreducible representations are one dimensional.

The first generalisation appeared in 1927 with the Peter–Weyl theorem. Starting with a locally
compact topological group G, then a unitary representation on a Hilbert space H is a continuous
homomorphism

π : G → U(H).
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We denote the unitary dual group of G by Ĝ, this is defined to be the space of (equivalence classes
of) irreducible unitary representations of G.

Theorem 0.11 ( [Fol16], Thm. 5.2, Thm. 5.12). If G is compact then every unitary representation
of G is a direct sum of irreducible unitary representations.

Remark 0.12. For lack of time and space we will need to make this remark several times: The
actual content of the Peter–Weyl theorem is not that the representations decompose but how they
decompose. That is Peter–Weyl tells us how to construct the components of the direct sum, what
their dimensions are etc.

Importantly, there is no requirement for finite dimensionality.

Example 0.13. Consider the regular representation of T on L2(T) this decomposes into

L2(T) =
⊕
χ∈Ĝ

Cχ.

Because T is compact and Abelian all its irreducible representations are one dimensional, in fact,
we have that all characters of G are maps of the form

eiθ 7→ eniθ, n ∈ Z.

Therefore the decomposition exhibits the exponentials as a basis for functions on the circle.

In the 1940’s, Weil worked out the theory for locally compact Abelian groups, proving the
general case of Bochner’s theorem [Fol16, Thm. 4.18]. The groups that we are interested in
however, are neither compact, AQ

×, nor Abelian, GLn.
A group is type I if for every (continuous unitary) representation π such that the centre of

HomRep(π, π) is trivial, we have a decomposition as a direct sum of irreducible representations.

Example 0.14. The adelic points of a connected reductive linear algebraic group (LAG) are a type
I group. The proof is outside the scope of this thesis but can be found in [Dv17, Thm. 1.7 + Thm.
2.3].

Example 0.15. Consider G(A) the adelic points of a connected reductive LAG. This is a second
countable group. We don’t have a reference for this so we present the argument.

First consider the adele ring AF of F . This has the restricted product topology, where if Oν is
the ring of integers of Fν , then an arbitrary open subset looks like a union of sets of the form

US ×
∏
s/∈S

Os,

where US ⊆
∏

s∈S Fs is open in the product topology. Because for any place Fν is second countable
and the product of second countable spaces is second countable it is clear that

∏
s∈S Fs is second

countable. Moreover there is a countable number of finite subsets of Z , hence there is a bijection
between a basis of the restricted product topology and ℵ0×ℵ0 which is countable hence this topology
is second countable.

If G ..= SpecF [x1, ..., xn]/(f1, ..., fm) is an affine scheme then the topology on G(A) is the
subspace topology of An on which all the f1, ..., fm vanish (see section 1.2.3). In particular the
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finite product of second countable spaces is second countable and subspaces of second countable
spaces are second countable, hence G(A) is second countable.

Example 0.16. The adelic points of a connected reductive LAG are a unimodular group. The
proof is outside the scope of this thesis but is stated in [Cona, Lem. 2].

In the 1950s Segal and Mautner proved the Plancherel Theorem which is the Peter–Weyl and
Bochner type result for type I, second countable and uni-modular topological groups.

Remark 0.17. The name Plancherel theorem is overloaded in harmonic analysis. We will give exact
references to the precise theorem we are referring to below.

To state it one must be somewhat familiar with direct integrals. The theory is explained
in [Fol16, 7.4] and the definitions are stated in B, but some of the basic idea is contained in the
example of direct sums.

Example 0.18 (Direct Sums). Let I be a countable set with the discrete sigma algebra and counting
measure µ. Let (Hi)i∈I be a collection of Hilbert spaces then

⊕
i∈I

Hi =

{
(hi)i∈I ∈

∏
i∈I

Hi :

∫
I

‖hi‖2i dµ < ∞

}
.

I.e. the Hilbert space direct sum is by definition square summable sequences, but sums are just
discrete integrals.

Then (part of ) the Plancherel theorem is

Theorem 0.19 (Plancherel, [Fol16], 7.44). The regular representation of a type I, second countable
and unimodular topological group is a direct integral of the irreducible unitary representations.

Remark 0.20. Again the Plancherel theorem says much more; it contains details about the topol-
ogy and measure on the set of unitary irreducible representations, and which representations are
associated to them in the direct integral.

0.0.3 The Work of Langlands

It is as a continuation or variation of this tradition that we see the work of Langlands in [Lan76], in
which he provides some decomposition of the spectrum of the adelic points of a connected reductive
algebraic group over a number field G(A).

Theorem 0.21 ( [Art79], MAIN THEOREM (b)). There is an orthogonal decomposition of the
representation of G(A) on L2(G(Q)\G(A)) into

L2(G(Q)\G(A)) =
⊕
P

L2
P(G(Q)\G(A)),

where P runs over certain “associate classes” of parabolics of G and the summands are the direct
integrals of spaces of L2 automorphic forms.

This construction is very explicit, and the direct integrals are constructed out of the residues
of Eisenstein series.
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The spectrum of L2(G(Q)\G(A)) refers to such a decomposition. In particular, we have some
important “pieces” to such a decomposition. We call such decompositions “spectral”, alluding to
the spectral theorem which provides such a decomposition in terms of the eigenvector of certain
operators. Moreover, these decompositions are largely proved in terms of the more general spectral
theorems. The piece that decomposes into a direct sum of irreducible is called the discrete
spectrum. The compliment of the discrete spectrum is called the continuous spectrum. One
can define cuspidal L2 functions in the exact same way as cuspidal automorphic forms (see section
5.1) and then it has been shown that the cuspidal spectrum, the subspace of L2 consisting of
cusp forms, decomposes as a direct sum [GH24, 9]. Thus the cuspidal spectrum is contained in the
discrete spectrum in this case. The residual spectrum is defined to be the compliment of the
cuspidal spectrum in the discrete spectrum.

It is during this analysis that the ideas expressed in his famous letter [Lan67] would begin
to form, as he noticed that certain Euler products of analytic functions were appearing in the
constant terms of the Eisenstein series. In particular we will see how the function M(s) appears
in the constant term of Eisenstein series. Langlands observed that [Lan71]

M(s) =

(∏
α

π1/2Γ( 12µ∞(s)(Hα))

Γ( 12 (µ∞(s)(Hα) + 1))

) ∏
p prime

(∏
α

1− 1
pµp(s)(Hα)+1

1− 1
pµp(s)(Hα)

)
.

This formula is obviously uninterpretable without further definitions, however we just want to
point out some things to notice. First there is a product over the places of Q , namely one item for
the infinite place and then a product over the prime numbers. The functions in the product are
gamma functions, related intrinsically to the L-function exemplar ζ, the Riemann-Zeta function,
and functions of the form 1−p−s. These facts should be contrasted with the general setting alluded
to in appendix A

This led to a general conjecture that there is a holomorphic and non-zero intertwining operator
N(s, w) such that

M(s, w) = r(s, w)N(s, w),

and r(s, w) is a ratio of L-functions, as defined by Langlands in for instance [Lan71].
Note that this is a global statement. There is an analogous set of conjectures for the local pieces,

namely M = ⊗νA the tensor over some local functions. Then the conjecture calls for the existence
for some normalised local operators, satisfying a long list of properties. This is extensively dealt
with in [Sha90]. Shahidi showed some cases of this conjecture in [Sha88]: Let π be a sufficiently
nice automorphic representation, let S be a finite set of places such that πν is unramified for ν /∈ S.
We have that there are some finite dimensional complex representations r1, ..., rm of LM such that

M(s, π)f =
⊗
ν∈S

A(s, πν)fν ⊗
⊗
ν /∈S

m∏
i=1

LS(is, π, r̃i)

LS(1 + is, π, r̃i)
f̃ν .

Recently it was shown for classical groups that this N indeed has the required properties. In
particular, the following theorem is sufficient for the cases dealt with in [JLZ13]:

Theorem 0.22 ( [CKPS], 11.1). Suppose that πν is a local component of a globally generic cuspidal
representation π of Gn(A). Then for any irreducible admissible unitary generic representation π′

ν
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of GLm(kν) the normalised intertwining operator N ′(S, π′
ν × πν , w) is holomorphic and non-zero

for Re(s) ≥ 0

0.0.4 Poles of Residual Eisenstein Series

Consider the group GLn. We then let n = ab for positive integers a, b. If τ is an irreducible,
cuspidal automorphic representation of GLa then there is a representation of GLab = GLn called
the “Speh representation” denoted

∆(τ, b).

Moeglin and Waldspurger also achieved a more fine analysis of the spectrum of GLn by proving that
as τ and b vary, these representations span the residual spectrum of L2(GLn(F )\GLn(A)) [JLZ13,
Thm. 1.1]. The Speh representation is formed by taking iterated residues of Eisenstein series in
the sense of [MW95, V], a more concrete explanation can be found in [Bre09, 2.4]. For a nice
survey of problems in this area, of residues of Eisenstein series, there is [Jia08].

If we denote Gn one of the classical groups GLn,Sp2n,Un etc. then Ga+b, have maximal
parabolics whose Levis decompose into products GLa ×Gb, and so we can use the representation
theory of GLn on a Levi to induce up to the whole group. One step in this direction is the work
of [JLZ13], in which the authors locate the poles of Eisenstein series induced in this manner.

These considerations are supposed to help prove cases of Langlands functorial transfers, that
is proving cases of Langlands functoriality for groups by “transferring” the known cases of functo-
riality from other groups. We quote from the introduction of [JLZ13]:

“The key ingredient in these constructions is to use certain Fourier coefficients of spe-
cial types of residues of certain residual Eisenstein series as kernel functions in the
corresponding integral transforms”

[Bum11] gives some more detail on how the analytic properties of Eisenstein series and their
L-functions imply that the automorphic representations can be lifted to other groups.

Finally, we remark that we spent a good amount of time trying to understand the analogous
story for the so called “almost algebraic groups”, topological coverings of G(A). In this setting
the work of [JLZ13] has also been applied to get similar results on poles of metaplectic Eisenstein
series, as in [Kap21]. It was also used to prove certain functoriality results as in [CFK24]. We
leave it for future work to understand the full significance of these calculations, but hope we have
motivated why they might be interesting.

Outline of Content

Chapter one deals with the generalities of linear algebraic groups, the objects whose representation
theory is the subject of discussion. First we define them and then look at the important subgroups
that are used in the study of automorphic forms arising on the adelic points of these groups. We
focus on the classical groups.

Chapter two deals with automorphic forms. We define automorphic forms in both the Archimedean
and adelic places. Finally we give the details of how to view modular forms as automorphic forms.
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Chapter three is dedicated to automorphic representations. We define them and specify some
important constructions that are needed in the final section.

In chapter four we define adelic Eisenstein series and show how they generalise the classical
modular forms also known as Eisenstein series.

Chapter five is dedicated to the constant term in the adelic setting. We first define them and
then go through the process of computing them in great detail for Eisenstein series.

Chapter six is an example computation of a constant term, this is the base case of an induction
formula proven in [JLZ13].
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Chapter 1

Classical Groups

We will recall a small amount of the theory of linear algebraic groups to fix conventions, for
a more detailed treatment one should consult the litany of sources on this matter: For a full
treatment see [Mil17] [Mil] [Mil12] [Spr98]. Excellent example computations can also be found
in [Gar97] [Mak] [MT11]. Or for a brief brush up on the main facts consult Springer’s article
in [BC79, Part 1, “Reductive Groups”].

The purpose of this section is to define the key examples and properties of algebraic groups.
We also define the most important subgroups, attempting to emphasize the role they play in the
theory. Throughout we will restrict to the case of the few classical groups that we define explicitly,
however, the theory works much more generally.

1.1 Definition

An algebraic group is for us a group scheme that is reduced, of finite type and defined over a
field. A linear algebraic group (LAG) is simply an affine algebraic group.

Proposition 1.1. An algebraic group is affine if and only if it is isomorphic to a Zariski closed
subgroup of GLn.

Proof. The forward implication is [Spr98, 2.3.7(i)]. The converse is the basic fact that
closed sub-schemes of affine schemes are affine [Mum99, II.5.T3].

The idea of LAG’s is that they are matrix groups defined by polynomial equations. This means
that they come with the technology of algebraic geometry and in particular one must be adept at
moving between the following equivalences:

Theorem 1.2 ( [Mil12], II.6, III.4). For a field K, then the following categories are equivalent:

• Group objects in AlgopK

• Representable (in the category of groups) functors AlgK → Group

• Group object in the category of affine schemes over K

• Commutative K-Hopf algebras.

2



1.2. SUBGROUPS 3

Example 1.3 (Gm). The first example is the “multiplicative group” denoted Gm or GL1 defined
over the field K. This is

Gm
..= Spec

(
K[x, y]/(xy − 1)

)
.

As a representable functor this sends a K-algebra R to HomK(K[x, y]/(xy − 1), R). These are
ring maps that are K-linear, and because y = x−1 we know that f(y) = f(x−1) = f(x)−1 for
f ∈ HomK(K[x, y]/(xy − 1), R). Thus the maps are determined by where they send x, moreover
they always send it to a unit, i.e. Imf ⊆ R×. For each element r ∈ R× we also have a map
sending x → r hence there is an isomorphism (of sets) between Gm(R) ∼= R×, from which we pull
back a group structure.

The other important examples of such groups are the “classical groups”. The exact groups that
an author might mean by classical may vary, so we define them explicitly here. First let V be a
finite dimensional K-vector space with a bilinear form 〈, 〉. An automorphism of this form is a map
α ∈ Aut(V ) such that

〈α(x), α(y)〉 = 〈x, y〉.

Therefore we can consider the group of automorphisms of this form Aut(V, 〈, 〉). This group,
depending on the properties of the bilinear form, will define our classical groups.

If the form is trivial, by which we mean, ∀x, y ∈ V 〈x, y〉 = 0 then we define the general
linear group,

GL(V ) ..= Aut(V, 〈, 〉) = Aut(V ).

If the form is non-degenerate and skew symmetric ∀x, y ∈ V 〈x, y〉 = −〈y, x〉 then the sym-
plectic group is,

Sp(V ) ..= Aut(V, 〈, 〉).

There are the further classical groups given by the determinant one subgroups, SL(V ). The
naming of Sp(V ) is somewhat serendipitous as one can show that it is contained in SL(V ). We
can make this into a functor from K-algebras to groups, by sending a K-algebra R to G(V ⊗K R).

Remark 1.4. Often the unitary and orthogonal groups are considered classical, as is the case
in [JLZ13]. These can both be defined in terms of automorphisms of different forms, for instance if
the form is non-degenerate and symmetric ∀x, y ∈ V 〈x, y〉 = 〈y, x〉 then we define the orthogonal
group,

O(V ) ..= Aut(V, 〈, 〉).

1.2 Subgroups

From now on let G be one of the classical LAG defined above, defined over a number field F with
adele ring A.

Remark 1.5. Most everything we say will apply verbatim to so called split reductive groups, however
we lose little in restricting to the classical groups we have chosen.

Subgroups with special properties allow us to reduce and break up problems into smaller ones.
Here we will briefly review and compute some examples of special subgroups. The point of these
subgroups is two fold. Some of them will help us perform “induction” from smaller simpler groups
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to larger ones. Others are there essentially as a part of the combinatorial data that classifies the
groups we are working with. In particular we need to understand all the pieces of the so called
Langlands-Iwasawa decomposition [GH24, 2.7],

G(A) = M(A)U(A)K = T (A)U(A)K. (1.2.1)

1.2.1 Parabolics, Levis and Unipotents

A subgroup P ⊆ G is called parabolic if G/P is a complete variety. Equivalently we can ask for
P to contain a Borel (see section 1.2.2).

Completeness is the algebro-geometric analogue of compact, always a desirable property. The
fact that they contain a Borel gives us an algebraic “parametrisation” of these subgroups, in the
case of the classical groups through the use of flags or roots. It is very important to have a
parametrisation of the parabolic subgroups when it comes to taking constant terms of Eisenstein
series which we will discuss in chapter 5.

A matrix m is unipotent if for some n ≥ 0 we have that (m − 1)n = 0. A subgroup is
unipotent if all its elements are unipotent. The unipotent radical of G is the maximal closed,
connected, normal, unipotent subgroup. A linear algebraic group is reductive if its unipotent
radical is trivial. Then we have the following fact and definition,

Lemma 1.6 ( [Bor91] 11.22). There is a split exact sequence (of algebraic groups)

0 → U → P → M → 0,

where U is the unipotent radical of P, and M is a reductive group known as a Levi of P (unique
up to conjugacy).

Thus parabolics and their Levis allows us to induce from a reductive subgroup up to the
reductive group. This is the technique of “parabolic induction” [Ber92, Thm. 10] that we will not
explicitly talk about here but which is happening secretly in the background in section 3.2.2.

Remark 1.7 (Bad Etymology). The origin of the name parabolic is a mystery. Borel in his
history [Bor01, VI.§2] attributes it to R. Godement in [God61]. Godement conjectures that the
quotient G(A)/G(Q) is compact if and only if every element of G(Q) is semi-simple, as is the case
in classical groups (this was shortly thereafter proven [MT62]). He says that

“Lorsque n’est pas compact, il est non moins facile de conjecturer qu’on doit pouvoir
définir quelque chose d’analogue aux classiques “pointes paraboliques”, lesquelles doivent
correspondre à des sous-groupes unipotents non triviaux de GQ”

which roughly (google) translates to that one can also conjecture that non-trivial unipotent elements
should correspond to “parabolic points” in a fundamental domain.

In the case of modular forms the fundamental domain is H = SL2(R)/ SO2(R) (for the details
see section 2.3). We have the classification of elements of SL2(R)\{±1} as in [Bor97, 3.5] via
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their trace

g is of type


Elliptic if 1

2 |tr(g)| < 1

Parabolic if 1
2 |tr(g)| = 1

Hyperbolic if 1
2 |tr(g)| > 1

.

This classification, it seems, relies entirely on the aesthetic connection with the classification of
the sections of conics via eccentricity. Proper parabolic subgroups of SL2(R) can be realised as the
stabilisers of lines in R2 under the standard action of SL2 on R2 [Bor97, 2.6] and moreover an
element of SL2(R) is parabolic if and only if it has one fixed point on ∂H̄ and none on H [Bor97, 3.5].

Being a parabolic element is equivalent to having eigenvalue 1 hence by the Jordan decomposition
we know that parabolic elements in SL2 are conjugate (over C) to(

1 1

0 1

)
, ±

(
1 0

0 1

)
.

Clearly the standard parabolic subgroup(
a b

a−1

)
⊆ SL2(R),

contains these matrices, and moreover all parabolics are conjugate to this parabolic. Hence all
parabolic elements are contained in a parabolic subgroup.

The take away is that perhaps the folklore of the name being for “para-Borelic”, as in kind of
a Borel, is probably a better way of thinking of them.

The Example of Sp2n

We collect the following facts as they will be useful in what is to come. Good references are the
notes [Conb] and the book [Gar97, §8].

Let (V, 〈, 〉) be a symplectic space as above and Sp(V ) is the automorphisms preserving the
form, when V is fixed or clear we will simply write Sp ..= Sp(V ). A flag of V is a sequence of
strict inclusions of vector subspaces

{0} ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ V.

A subspace of V is said to be isotropic if the form is constantly zero on it (in both variables). A
flag is isotropic if the proper subspaces in it are isotropic subspaces. A maximal isotropic flag is
an isotropic flag with exactly n components. Sp2n acts on a flag by acting on each of the subspaces.
This action preserves isotropic flags i.e. it sends an isotropic flag to an isotropic flag. Stabilisers of
isotropic flags give parabolics of Sp and moreover all parabolics arise in this way [Spr98, Exercise
3.2.16, 6.2.11].

Example 1.8. Consider a four dimensional vector space V with a form given by the matrix(
I2

−I2

)
,
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then a maximal isotropic flag is

0 ⊂ Fe1 ⊂ Fe1 ⊕ Fe2 ⊂ F 4,

where ei = (δij)j (the Kronecker delta). This has stabiliser consisting of matrices in Sp of the form
∗ ∗ ∗ ∗

∗ ∗ ∗
∗
∗ ∗

 .

In particular maximal standard parabolics of Sp are stabilisers of minimal (non-trivial flags),
i.e. stabilisers of non-zero isotropic subspaces,

0 ⊂ V` ⊂ V,

where V` = span(e1, ..., e`).

Remark 1.9. The fixing of this basis corresponds to fixing a Borel, as in the following section.
Hence the name standard.

Then the stabiliser consists of matrices of the form
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 ,

with the sizes of the diagonal blocks being (these numbers square)
` ∗ ∗ ∗
0 n− ` ∗ ∗
0 ∗ ` ∗
0 ∗ ∗ n− `

 .

This has Levi consisting of matrices of form
A

a b

(AT )−1

c d

 , A ∈ GL`(F ),

(
a b

c d

)
∈ Sp2(n−`)(F ),
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and unipotent radical consisting of matrices of form
1 ∗ ∗ ∗

1 ∗
1

∗ 1

 ,

with relations among the entries. These maximal parabolics are labeled by the size of the Levi’s
GL block, we label Pr the unique standard maximal parabolic with standard Levi GLr ×Sp2(n−r).

1.2.2 Borel and Torus

A split torus is an algebraic group that is isomorphic to GLb
1 for some b ∈ N.

Example 1.10 (Bad Etymology). GL1 /C is a split torus. Consider the field extension C/R.
Then C has the inner product given by

〈z, z′〉 ..= z̄z′.

We can look at the elements of C that preserve this inner product,

U(1) ..= {c ∈ GL1(C) : ∀z, z′ ∈ C, 〈cz, cz′〉 = czcz′ = z̄z′}

= {c ∈ GL1(C) : |c| = 1}.

Note that this is (locally) a (real) line topologically so we do not expect it to be a complex variety.
Indeed this defines a real algebraic group given by the zero locus in R2 of the two variable polynomial
x2 + y2 − 1. In other words,

U(1) ∼= MaxSpec
(
R[x, y]/(x2 + y2 − 1)

)
,

the set of maximal ideals. Now if we base change to C we have

R[x, y]/(x2 + y2 − 1)⊗R C ∼= C[x, y]/
(
(x+ iy)(x− iy)− 1

)
∼= C[s, t]/(st− 1)

∼= C∗.

Thus GL1 /C is the complexification of the torus U(1).

Remark 1.11. These tori also play the same role in the classification of reductive LAG as the real
Lie groups called tori play in the classification of Lie groups [Hal15, Part III].

A subgroup that is isomorphic to a split torus and is maximal in this respect is called a maximal
split torus.

Example 1.12. The classic example of a maximal split torus is the maximal split torus of GLn,
the group of diagonal matrices in GLn.

A Borel is a maximal, closed, solvable and connected subgroup of G. A Borel can be considered
to be a parabolic that is minimal with respect to inclusion. The maximal split tori then form the
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Levis of these parabolics. In particular for a Borel B we have that

B = TU,

for a maximal split torus T and unipotent radical U .

Example 1.13. The usual Borel of GLn is the group of upper triangular matrices. If n is even
and one intersects this Borel with Sp2( 1

2n)
then we get a Borel of Sp2( 1

2n)
.

Lets prove this in GL2 and then believe that the only complication to going to larger n is keeping
track of indices. So let

B =

(
∗ ∗

∗

)
,

we need to show that the derived series terminates for it to be solvable. So let

g =

(
x y

z

)
, h =

(
a b

c

)
,

be arbitrary in GL2, their commutator is then

g−1h−1gh =

(
1 bx−ay

ax

1

)
.

Hence

[B,B] =

(
1 ∗

1

)
.

Commutate two arbitrary elements again shows that

[[B,B], [B,B]] = 1.

It is clear that this is a closed subgroup because it is itself a linear algebraic group, moreover for
LAG’s we have the algebraic criterion of connectedness given by having the only idempotents in the
representing algebra being 0, 1 [GH24, 1.5]. Because B = SpecZ[xi,j : 1 ≤ i, j ≤ 2][y]/(det(xij)y−
1, x2,1) it is clear that this group is connected. Finally it is clear that if a subgroup strictly contains
the group of upper triangular matrices then it is in fact all of GL2 and hence this is maximal.
Therefore this is a Borel.

If a Borel B is fixed, then a parabolic containing this Borel B ⊆ P is called standard, there is
a unique Levi of a standard parabolic containing this Borel called the standard Levi.

1.2.3 The Topology on Points

Let F be a number field and G = SpecF [x1, ..., xn]/(f1, ..., fm) be a LAG over F. As a locally ringed
space this scheme has the Zariski topology, in the theory of automorphic forms however we wish
to topologise the local and adelic points in a way which accommodates analysis. In particular the
topology should be locally compact and Hausdorff so that we have Haar measures on the groups.

Following [Con12] we think of G(A) as the subset of An on which the functions fi : An → A all
vanish. We give it the subspace topology which inherits the local compact and Hausdorff properties
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from An. If ν is a place of F then we have the same definition, G(Fν) is the subspace of Fn
ν on

which fi : F
n
ν → Fν all vanish and it is endowed with the subspace topology. These topologies are

referred to as the Hausdorff topology.

Remark 1.14. When Fν = C then the Hausdorff topology on G(C) agrees with the topology of the
analytification of G, often denoted Gan.

1.2.4 Maximal Compact Subgroups

We will often need to fix a maximal compact subgroup K ⊆ G(A) of the Hausdorff topology. These
maximal compact subgroups are not unique and as such when fixing one it can be arranged to
have many convenient properties [MW95, I.1.4]. In particular if we have a classical group G and
a fixed Borel B:

1. First require that
K =

∏
ν

Kν ,

where the product is over all places of F and Kν ⊆ G(Fν) is maximal compact subgroup.

2. If Oν is the ring of integers of Fν , then for almost all places, G(Oν) is defined and is maximal
compact in G(Fν) hence we can require Kν = G(Oν) at these places.

3. We require
G(A) = B(A)K.

4. For every standard parabolic P with Levi decomposition P = MU we have that

P (A) ∩K =
(
M(A) ∩K

)(
U(A) ∩K

)
,

and M(A) ∩K is a maximal compact subgroup of M(A).

It is in terms of the third property that we like to think of the maximal compact subgroup, it is the
complimentary piece of the Borel. Moreover the fourth property should be thought of as a condition
that the maximal compact subgroups are well behaved with the way that we are moving between
the bigger and smaller reductive groups. Maximal compact groups with all these properties are
said to be in good position with respect to B.



Chapter 2

Automorphic Forms

The story starts with the classical modular forms, or functions on the upper half plane that satisfy
some invariance conditions and differential equations. This evolves into the notions of Maass forms
on symmetric spaces and eventually reaches its apotheosis in the concept of automorphic form that
we will present here.

We will present two notions of automorphic forms here. In the literature they are both
called “automorphic forms” however here we will distinguish those that are defined only on the
Archimedean points as “Archimedean automorphic forms” for clarity.

The first natural question is if there is a special case of automorphic forms which yield modular
forms. The space of automorphic forms is larger than just modular forms, it gives the space
of Maass forms (or modular and Maas forms, depending on convention). This is well covered
in the literature [Eme] [Bum97, 3.2] [Boo] [Gar16]. We explain modular forms as Archimedean
automorphic forms as we think it is where the connection is clearest. We will give an example of
modular forms as adelic automorphic forms when we come to the Eisenstein series in section 4.2.

2.1 Archimedean Automorphic Form

Fix a number field F and a classical group G defined over F . Let ∞ denote the set of Archimedean
places. We denote A∞ = F∞ ..=

∏
ν∈∞ Fν and note that G(F∞) ∼=

∏
ν∈∞ G(Fν). We denote

Af
..=

∏′

ν /∈∞
Fν the finite adeles. Consider ν ∈ ∞ one such Archimedean place, then Fν is

either R or C . In particular (the analytification of) G(Fν) is a Lie group and we call a function,
ϕ : G(Fν) → C, smooth if it is smooth in the sense of functions on manifolds. The collection of
such smooth functions on G(F∞) will be denoted C∞(G(F∞)).

Because G(F∞) is a Lie group we know how to define its Lie algebra g, as the tangent space
at the identity, and we now denote Z(g) the centre of the universal enveloping algebra of the
complexification of g, it would be more reasonable to use Z(U(gC)) but that is too cumbersome
so we follow the tradition. A vector in a Z(g)-module ϕ ∈ V is called Z(g)-finite if the space
span

(
Z(g)ϕ

)
is finite dimensional.

Let K∞ ⊆ G(F∞) be a maximal compact subgroup. Then again an element of a K∞-module
is K∞ finite if the span of its orbit is a finite dimensional vector space (we think here of C[K∞]-
modules).

10
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To define automorphic forms we look at the representation C∞(G(F∞)) with the right regular
action of K∞, i.e. g.f(x) = f(xg). In particular the Z(g) module structure is induced from the
action of g on C∞(G(F∞)) by

z.F (g) =
∂

∂t
F (getz)|t=0, x ∈ g.

Finally we want a growth condition. Fix an embedding ι : G → GLn which gives another
embedding G → SL2n via

ι′ : g 7→

(
ι(g)

(ι(g))−t

)
.

We have denoted the inverse of the transpose by −t. A function ϕ : G(F∞) → C is of moderate
growth if there are constants (c, r) ∈ R>0 × R such that

|ϕ(g)| ≤ c‖g‖r ..= c

(∏
ν∈∞

sup
1≤i,j≤2n

|ι′(g)i,j,ν |ν

)r

.

Remark 2.1. One can define norms on G(A) via the linearisation of such groups, i.e. their repre-
sentations. Concretely if σ is a finite dimensional complex representation of G(A) on some Hilbert
space with a K∞ invariant inner product and ∗ is the adjoint matrix with respect to this Hilbert
space structure then a norm on G(A) is a function of the form

g 7→
(
tr σ(g)∗σ(g)

) 1
2 .

This moderate growth condition is then equivalent to some norm ‖−‖ existing on G(F∞) such that

|ϕ(x)| ≤ C‖x‖n,

for some C > 0, n ∈ N and all x ∈ G(F∞). This is also equivalent to all such norms satisfying this
condition [BC79, Part 1, “Automorphic Forms and Automorphic Representations”, 1.2].

Finally a subgroup Γ ⊆ G(F∞) ⊆ GLn(F∞) is called arithmetic if Γ ∩ GLn(O∞) is a finite
index subgroup in both Γ and GLn(O∞).

Definition 2.2. Let Γ ≤ G(F∞) some (arithmetic) subgroup, an automorphic form for Γ is a
smooth function of moderate growth

ϕ : G(F∞) → C,

that is K∞ and Z(g) finite with (left) Γ invariance. We denote the set of these “Archimedean”
automorphic forms by A(Γ\G(F∞)).

2.2 Adelic Automorphic Form

Here we follow [MW95, I.2.17] and [BC79, Part 1, “Automorphic Forms and Automorphic Rep-
resentations”, 1.2]. Fix a Borel B ⊆ G and a standard parabolic B ⊆ P ⊆ G with a standard
Levi decomposition P = MU . We let K be a maximal compact subgroup of G(A) that is in good
position as in section 1.2.4.
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We say that f : G(Af ) → C is smooth if it is locally constant in the Hausdorff topology and
we denote the set of such smooth functions C∞(G(Af )).

Thus for the full adeles we have the notion of smooth as an element of the tensor product,

C∞(AF ) ..= C∞(G(Af ))⊗ C∞(G(F∞)).

Notice that a priori the codomain is an infinite tensor product over C of copies of C , this is
canonically isomorphic to C , thus we can conflate a smooth function with its composition along
this isomorphism and think of them as functions into C .

We still consider Z(g) to be the center of the universal enveloping algebra of the complexified
Lie algebra at the infinite places, exactly as before. We define an action by linearly extending

z.(f ⊗ g) = f ⊗ (z.g),

i.e. it acts on the Archimedean places as in the setting of Archimedean automorphic forms.

The definition of moderate growth carries over verbatim, however we change the set of places
multiplied over to be all of them now. Specifically fix an embedding ι : G → GLn which gives
another embedding G → SL2n via

ι′ : g 7→

(
ι(g)

(ι(g))−t

)
.

We have denoted the inverse of the transpose by −t. A function ϕ : G(A) → C is of moderate
growth if there are constants (c, r) ∈ R>0 × R such that

|ϕ(g)| ≤ c‖g‖r ..= c

(∏
ν

sup
1≤i,j≤2n

|ι′(g)i,j,ν |ν

)r

.

Remark 2.3 ( [BC79], Part 1, “Automorphic Forms and Automorphic Representations”). The
collection of moderate growth functions is independent of the choices of embedding.

Definition 2.4. A function ϕ : U(A)M(F )\G(A) → C is an automorphic form if it is smooth,
moderate growth, Z(g) and K finite. We will denote the set of these automorphic forms by
A(U(A)M(F )\G(A)).

Remark 2.5. It is important that M(F ) is treated as a subgroup of M(A) via the diagonal embed-
ding.

Remark 2.6. What we have called automorphic forms are sometimes referred to as “smooth K-finite
automorphic forms” [Cogc, 2.2].

Remark 2.7. This is a more general setup than in the Archimedean case as we only require
U(A)M(F ) invariance. By choosing the parabolic to be G itself we get full G(F ) invariance
as in the Archimedean case.
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2.3 Modular Forms

Recall the definition of a modular form of weight k (of full level and trivial character) [DS05,
1.1.2] as a function

ϕ : H → C,

where H is the upper half plane in C , that is holomorphic, satisfies

ϕ(γ.z) = (cz + d)kϕ(z), γ =

(
a b

c d

)
∈ SL2(Z),

and is of moderate growth, that is sub-exponential growth.

We want to think of the upper half plane as a quotient of the Q∞ = R points of some reductive
group. If we have a transitive action of some reductive group then by the orbit stabiliser theorem
we would have a bijection of sets.

Theorem 2.8.
H ∼= SL2(R)/ SO2(R),

as sets.

Proof. Consider the action

SL2(R) y H :

(
a b

c d

)
.z =

az + b

cz + d
.

Then look at the orbit of i, namely(
a b

d

)
.i =

ai+ b

d
= a2i+ ab,

which letting a, b ∈ R vary is clearly surjective onto the whole upper half plane. So there is one
orbit, and hence by the orbit stabiliser we know that

H ∼= SL2(R)/stab(i),

so we want to find

stab(i) =

{
g =

(
a b

c d

)
∈ SL2(R) : g.i = i

}
,

in particular we solve

i = g.i =
ai+ b

ci+ d
= (c2 + d2)−1(ac+ bd+ idet g).

So equating coefficients we have

det g(c2 + d2)−1 = 1 =⇒ c2 + d2 = det g = 1,
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on the other hand
ac+ bd = 0.

Now the pairs c2 + d2 = det g = 1 are parameterized by θ ∈ [0, 2π) using c = sin θ, d = cos θ

hence subbing this into the above equation

−b

a
= tan θ,

and so b = −k sin θ, a = k cos θ for some k ∈ R but the determinant must be 1 so k = 1. Hence

stab(i) =

{(
cos θ − sin θ

sin θ cos θ

)
: θ ∈ [0, 2π)

}
= SO2(R).

Remark 2.9. This can be beefed up to an isomorphism of complex analytic spaces. Sometimes to
make the action of certain (Hecke) operators more apparent this is exhibited as

H ∼= GL+
2 (R)/AGL2

SO2(R).

This obscures the connection with the reductive group setting however so we avoid it here.

SL2 is a reductive group and SO2(R) is its maximal compact subgroup of SL2(R). The decom-
position of the upper half plane in 2.8 suggests that function on the upper half plane might have
some invariance along the maximal compact subgroup of the reductive group SL2. If we define

B ..=

{(
y1/2 xy−1/2

y−1/2

)
: x, y ∈ R, y 6= 0

}

which happens to be the real points of a Borel subgroup of SL2 we have the picture;

B SO2(R) = SL2(R) SL2(R)/ SO2(R) H

SL2(Z) \ SL2(R)

∼project

g 7→g.i

project

We can lift a function on SL2(R)/ SO2(R) to SL2(R) by composing with the projection, however
this is not SL2(Z) invariant, thus we need to add a pre-factor to ensure this in our associated
automorphic form. The algebro-geometric perspective in [Eme] can make this seem slightly less ad
hoc.

Thus for f a modular form of weight k the following function on SL2(R)

F (g) ..= (ci+ d)−kf(g.i),

we claim is an Archimedean automorphic form for SL2(Z). We take for granted its smoothness.
The SL2(Z) invariance is obvious from the modularity condition and we consider the moderate
growth condition to be tautological. It remains to show the last two properties:

Lemma 2.10. SO2(R) is a maximal compact subgroup inside SL2(R). F is an SO2(R)-finite
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function.

Proof. Using that κ =

(
cos θ − sin θ

sin θ cos θ

)
∈ K = SO2(R) acts trivially on i, an elementary

computation shows that for g ∈ SL2(R),

F (gκ) = e−ikθF (g).

Hence F (g) is acted on by K via a one dimensional irreducible representation. In particular it
is finite dimensional.

Lemma 2.11. F is a Z(sl2) finite function.

Proof. Only a sketch.
The center of the universal enveloping algebra of the complexified Lie algebra is generated

by the Casimir operator. We have the coordinates on SL2(R) from [Bum97, 1.19]{(
y1/2 xy−1/2

y−1/2

)
: x, y ∈ R, y 6= 0

}
SO2(R),

in which the Casimir acts as the differential operator

∆ = y2

((
∂

∂x

)2

+

(
∂

∂y

)2
)

− y
∂2

∂x∂θ
,

[Bum97, 1.29,Prop 2.2.5]. Now we claim that F is an eigenfunction for this operator. An

element (x, y, θ) ..=

(
y1/2 xy−1/2

y−1/2

)
κθ ∈ SL2(R) acts on i by sending it to x+iy (elementary

computation). The bottom row of the product is
(
y−1/2 sin θ; y−1/2 cos θ

)
which results in

F (x, y, θ) = yk/2e−ikθf(x+ iy).

It is then a calculus exercise to apply ∆ to this, using the holomorphicity we also get that
fxx − fyy = 0 and fy = ifx which cancels away terms and we get that

∆F (x, y, θ) =
k

2

(
k

2
− 1

)
F (x, y, θ).

Therefore the dimension of Z(g)F is simply one.

This example makes it clear that the two finiteness conditions for automorphic forms are in
some sense functional equations that they must satisfy. There is a nice explanation of how to lift
this to the adelic setting in several places, the key is essentially the isomorphism

Z\R ∼= Q\AQ/Ẑ

The details are quite clear in [Cogc, 2.1] or [Boo]. We will revisit this perspective through the
example of the Eisenstein series in section 4.2.



Chapter 3

Automorphic Representations

The references that will be most helpful are [BC79, Part 1, “Automorphic Forms and Automorphic
Representations”] [GH24] for the general theory, we will follow the notation developed in [MW95]
as it is somewhat standard. We will discuss some of the details of the representation theory of
reductive groups on spaces of automorphic forms. In particular we want to draw attention to some
of the quirks of the category of automorphic representations.

3.1 Local Representation Theory

Recall that in the theory of complex representations of finite groups there is really only one im-
portant representation, that is the regular representation i.e. for the finite group G, the C[G]

module C[G]. This is important for two reasons, the first is that it is always a priori defined
uniformly for all groups. The second is that it decomposes into a direct sum over all irreducible
modules [Ser96, Ch. 2.4 Cor. 2 ].

Let G be a classical group defined over a number field F . As in the finite group case we want
to consider the right regular action of the adelic points, G(A), on a space of functions G(A) → C,
namely

g.f(x) = f(xg), g, x ∈ G(A), f ∈ Maps(G(A),C).

One can ask if this representation sends an automorphic form to an automorphic form. If ϕ(x) ∈
A(U(A)M(F )\G(A)) and g ∈ G(Af ) then ϕ(xg) ∈ A(U(A)M(F )\G(A)). Hence A(U(A)M(F )\G(A))
is a G(Af )-module. In particular it is a module for G(Fν) for all ν non-Archimedean.

There is a problem with the K-finiteness in the infinite places however which prevents A(U(A)M(F )\G(A))
from being a full G(A) module.

Example 3.1 ( [Cogc], 2.3). If ϕ ∈ A(Γ\G(F∞)) is K∞-finite, then g.ϕ is gK∞g−1-finite. This
is still a maximal compact subgroup, however in the infinite place it will a priori have only the
identity in common with the original K∞.

For example consider SL2 where the maximal compact is SO2, if we conjugate we get g SO2 g
−1

(
a b

c d

)(
cos θ − sin θ

sin θ cos θ

)(
d −b

−c a

)
=

(
cos θ + (db+ ca) sin θ − sin θ(a2 + b2)

sin θ(d2 + c2) cos θ − (bd+ ac) sin θ

)
.

16
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If we want to find the intersection of SO2 with g SO2 g
−1 we need to solve the system(

cos θ′ − sin θ′

sin θ′ cos θ′

)
=

(
cos θ + (db+ ca) sin θ − sin θ(a2 + b2)

sin θ(d2 + c2) cos θ − (bd+ ac) sin θ

)
.

Where θ might not be θ′. If θ = nπ, n ∈ Z then the sin terms on the right vanish and we get the
±1 as a point of intersection, so consider θ 6= nπ. Then we require

cos θ′ = cos θ − (bd+ ac) sin θ = cos θ + (db+ ca) sin θ,

hence 2(bd + ac) sin θ = 0 and because sin θ was assumed to be non-zero this is the same as

bd+ ac = 0. Thus for instance the element

(
1 1

1

)
conjugates SO2 to another subgroup that has

only trivial intersection.
Finally it is worth noting that this is not an issue at the finite places, namely if K = KfK∞ is

our maximal compact subgroup of G(A) then Kf is also open and hence Kf ∩ gKfg
−1 is of finite

index in both Kf and gKfg
−1 and so their notions of K-finiteness will agree.

For this reason we will need to talk about (g,K)-modules:

Definition 3.2 ( [GH24], 4.4.6). Let G be a real Lie group (for example the analytification of the
real or complex points of our favourite reductive LAG) and K be a maximal compact subgroup of
G. Let gC be the complexification of the real Lie algebra of G and k the real Lie algebra of K.

A (g,K)-module is a complex vector space V with two representations

π̃ : gC → End(V ), π : K → GL(V ),

satisfying the following axioms

1. V decomposes into a countable direct sum of finite dimensional K representations.

2. The representations, π, π̃, should be compatible: For all X ∈ k and v ∈ V

π̃(X)(v) =
d

dt
π(etX)(v)|t=0 = lim

t→0

π(etX)(v)− v

t
.

In particular the right hand limit exists.

3. The representations, π, π̃, should be compatible with the adjoint representation: For k ∈ K

and X ∈ g

π(k)π̃(X)π(k−1)(v) = π̃(Ad(k)(X))(v).

Remark 3.3. It is common to use the same symbol for both of these representations in the (g,K)-
module. It is also important to note that these are purely algebraic representations, there is no
condition of continuity etc.
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If g is the Lie algebra of G(F∞) and K∞ ⊆ G(F∞) is a maximal compact subgroup in good
position we can define a (g,K∞)-module structure on the space of automorphic forms as follows.
Recall that by definition we have that

A(U(A)M(F )\G(A)) ⊆ C∞(G(Af ))⊗ C∞(G(F∞)).

If ϕf ⊗ ϕ∞ ∈ A(U(A)M(F )\G(A)) and (gf , g∞) ∈ G(A) then k ∈ K∞ acts by

k.(ϕf ⊗ ϕ∞)(g) ..= ϕf (g)⊗ ϕ∞(gk),

i.e. via the right regular representation on the Archimedean component. We extend this linearly
from pure tensors to all tensors. The Lie algebra of G(F∞) acts by linearly extending the action
we have previously defined in section 2.1, via

z.(ϕf ⊗ ϕ∞)(gf , g∞) = ϕf (gf )⊗
∂

∂t
ϕ∞(g∞etz)|t=0, z ∈ g.

To see that we have really fixed the K∞ problem we should check that this really defines an
action.

Lemma 3.4. If ϕ ∈ A(Γ\G(F∞)) is K∞-finite and X ∈ g then X.ϕ is K∞-finite.

Proof. There is an action of K∞ on g ⊗ C∞(Γ\G(F∞)). If k ∈ K∞, ϕ ∈ C∞(Γ\G(F∞))

and X ∈ g then the action is given by linearly extending

k.(X ⊗ ϕ) = Ad(k)(X)⊗ k.ϕ.

The map
g⊗ C∞(Γ\G(F∞)) → C∞(Γ\G(F∞)), X ⊗ ϕ 7→ Xϕ, (3.1.1)

is K∞ equivariant by the definition of the adjoint action. Now if ϕ ∈ A(Γ\G(F∞)) then
the span of ϕ is a finite dimensional K∞ module which we will denote Mϕ. Then k.Xϕ is in
the image of g⊗Mϕ under the map 3.1.1. But the Lie algebra is finite dimensional and Mϕ is
finite dimensional so this image is finite dimensional. Therefore the K∞ span of Xϕ is finite
dimensional and so Xϕ is K∞-finite.

Finally the conditions for these representations to be a (g,K∞) module can be checked. (1)
is [GH24, Thm. 6.3.4]. (2) is immediate from the definitions of the two representations and the
fact that automorphic forms are smooth. (3) is immediate from the definition of the adjoint action.

3.2 Automorphic Representations

Recall that if A,B,C are all R modules and we have the inclusions of R modules C ⊆ B ⊆ A

then we call B/C a subquotient of A. We now think of A(U(A)M(F )\G(A)) as being a G(Af )×
(g,K) module. An automorphic representation is then defined to be a subquotient of this
representation. We will say that such an automorphic representation is induced from P = MU ,
to indicate that it is a subquotient of the space of U(A)M(F ) invariant functions.
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Remark 3.5. Some authors will require that an automorphic representation is by definition an
irreducible subquotient.

Remark 3.6. We really need a set theoretic definition here. The quotient of these modules can-
not be considered up to isomorphism of (g,K)-modules but must be the classical set theoretic
realisation of this object, defined as equivalence classes of elements of the module. This is to say
if one were to think of the category of automorphic representations it is much smaller than the
category of G(Af )× (g,K)-modules (in particular the category of automorphic representations has
a cardinality, whilst there is a proper class of G(Af )-modules). The reason is that we will want to
talk about the automorphic forms themselves, and consider their properties.

Remark 3.7. Automorphic representations can also be defined as representations of an algebra
H, the global Hecke algebra. This is the approach in [BC79, Part 1, “Automorphic Forms and
Automorphic Representations”, 4.6], and can be a helpful perspective to simplify definitions. This
is also a motivation behind why Harish-Chandra’s (g,K)-modules are the “right” replacement for
the regular representation.

Example 3.8. It is very hard to really write down something explicit. One thing that we can do
is take a modular form f . Then we know how to associate a concrete automorphic form to it f̃ .
To any fixed automorphic form we have an automorphic representation given by taking the span of
its orbit

spanC

{(
G(Af )× (g,K)

)
.f̃

}
⊆ A(U(A)M(F )\G(A)).

3.2.1 Cuspidal Representations

An automorphic form ϕ ∈ A(U(A)M(F )\G(A)) is called cuspidal if all its constant terms vanish,
see section 5.1 for more detail on constant terms. The space of such automorphic forms is denoted
A0(U(A)M(F )\G(A)). An automorphic representation is called cuspidal if it is an irreducible
subquotient of A0(U(A)M(F )\G(A)).

Remark 3.9. Again this is not as a (g,K)-module.

3.2.2 Isotypic Components

Following the convention of [MW95, II.1] we make two cases: Let π be an irreducible subquotient
of the space A(M(k)\M(A)), that is not cuspidal. Then we denote the π isotypic component of
A(M(k)\M(A)) by A(M(k)\M(A))π.

We will also need the space

A(U(A)M(F )\G(A))π
..= {ϕ ∈ A(U(A)M(F )\G(A)) : ∀k ∈ K, ϕk ∈ A(M(k)\M(A))π},

where ϕk : M(A) → C is given by ϕk(x) = −ρP (x)ϕ(xk).
Now if π is cuspidal, we define A(M(k)\M(A))π to be the isotypic component of π in A0(M(k)\M(A))

and similarly we have

A(U(A)M(F )\G(A))π
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..= {ϕ ∈ A0(U(A)M(F )\G(A)) : ∀k ∈ K, ϕk ∈ A0(M(k)\M(A))π}.

Remark 3.10. We cannot simply take the isotypic components as (g,K)-modules we need to take
the isotypic components of the cuspidal subspace directly. This is to say again that the category
of automorphic representations is very explicit.

The point is that we want the isotypic component corresponding to a cuspidal representation
to be cuspidal, however this just might not be the case. Yamana in [Yam13, Remark. 7.12] has a
counter example when one allows unitary groups over division algebras (non-commutative fields).
It could be interesting to investigate this example more closely to see if the example can be pulled
back to a unitary group over a field. In [Yam13] there is an automorphic representation of the
quarternionic unitary group constructed, Π(V ), that appears in both the cuspidal and residual
spectrum. By that Yamana means that up to isomorphism the representation can been seen in
both residual and cuspidal spectrum. In particular if one were to take the component that is in the
cuspidal spectrum and look at its isotypic component then the versions in the residual spectrum
would also occur and hence by definition of residual spectrum would not be cuspidal.

If we restrict to the cases dealt with in for instance [MW95], namely not dealing with quar-
ternions, then we have been told that this is an open problem whether or not this restriction is
superfluous.



Chapter 4

Eisenstein Series

The Eisenstein series is from our perspective the most important tool in the theory of automorphic
forms. Some surveys on its role, properties and open problems are [Lap22], [Art79], [Kim] and
[Jia08]. To see the relation to the classical Eisenstein series there is [Gar16] which we will also go
through in section 4.2. One thing that Eisenstein series do, as in the theory of modular forms,
is that they furnish us with quasi-concrete examples of automorphic forms. Another reason that
these functions are important is through their normalisation and constant terms, in which products
of L-functions appear, we discuss this more in section 5.1. This has been a fruitful method for
proving theorems about L-functions as in [Sha10] [Pol] [Art79], or conversely proving theorems
about Eisenstein series [JLZ13] using properties of L-functions.

4.1 Eisenstein Series

As usual we fix a classical group G defined over a number field F, with a Borel B and a standard
parabolic with standard Levi decomposition P = MU .

Following the setup in [MW95, I.1.4] we consider a character χ ∈ Rat(M) ..= HomLAG(M,Gm),
thinking of it below as a natural transformation, and then define

|χ| : M(A) → C, (mν) 7→
∏
ν

|χ(Fν)(mν)|ν .

The intersection of the kernels of these characters is

M1 ..=
⋂

χ∈Rat(M)

ker |χ|.

The collection of characters of M(A) that are trivial on M1 is denoted

XM
..= HomTopGroup(M(A)/M1,C∗).

Remark 4.1. To make it seem less mysterious we comment that this group has some importance
in the more general theory. It is one of the pieces in the “Langlands decomposition” of the

21
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Archimedean points of a parabolic P = MU , if ν is an Archimedean place then,

P (Fν) = AMM1U(Fν).

We will not define AM . It also has the property that M(Q)\M(A)1 has finite measure [GH24, 4.9],
in the induced measure from the Haar measure on M(A).

The set of complex characters of M ,

a∗M
..= Rat(M)⊗Z C,

is isomorphic as C vector spaces to XM [MW95, I.1.4]. If ZG(A) is the center of G(A) then we also
have the space

XG
M

..= HomTopGroup((M(A)/M1)/ZG(A),C∗),

which is characters of M(A)/M1 which are also trivial on the center of G.

Example 4.2. For the maximal standard parabolic Pr with Levi Mr (see section 1.2.1) of Sp2n

we have that XSp2n

Mr
is at most a one dimensional C vector space.

First of all we have that [MW95, I.1.4]

X
Sp2n

Mr
⊆ XMr

∼= a∗Mr

..= Rat(Mr)⊗Z C.

Thus it is clearly sufficient to bound the dimension of a∗Mr
as a C vector space, moreover this

dimension agrees with the dimension of Rat(Mr) as a free Z module.
Thus we compute dimZ (Rat(Mr)):

Rat(Mr) = Rat(GLr ×Sp2m)

= Hom(GLr ×Sp2m,Gm)

(1) ∼= Hom(Ab(GLr ×Sp2m),Gm)

(2) ∼= Hom(Ab(GLr)×Ab(Sp2m),Gm)

(3) ∼= Hom(Gm × 1,Gm)

∼= Z.

In (1) we have used the universal property of the abelianisation Ab(G) = D(G) \ G = [G,G] \ G
because Gm is Abelian. (2) is that the abelianisation commutes with direct products. (3) is because
Sp is a perfect group.

Using the Langlands-Iwasawa decomposition of equation 1.2.1 we know that G(A) = M(A)U(A)K,
hence for m ∈ M(A), u ∈ U(A), k ∈ K, there is the natural map mP : G(A) → M1\M(A) sending
umk 7→ M1m.

Now if we take the collection of irreducible automorphic representations of M(A),

ˆM(A) ..= {(π, V ) : π is an irreducible automorphic representation of M(A)},

then we can think of XG
M as being one dimensional automorphic representations (with some extra

invariance) and so there is a natural action on M̂ given by tensoring, i.e. if λ ∈ XG
M and (π, V ) ∈ M̂
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then
λ.π ..= λ⊗ π.

Then M̂ decomposes as a disjoint union of its orbits. The orbit P of a cuspidal representation
π0 is called a cuspidal datum. By definition XG

M acts transitively on any cuspidal datum P but
by [MW95, II.1] it also acts freely. Thus P is in bijection with XG

M . Through this bijection we
transmit the complex structure on a∗M to XM then to the subspace XG

M and finally to P.

Let P be a cuspidal datum with a complex structure as above. Let π ∈ P and ϕπ ∈
A(U(A)M(F )\G(A))π, then λ ∈ XG

M acts on ϕπ by

λ.ϕπ(g) = (λ ◦mP )(g)ϕπ(g),

which is then an element of A(U(A)M(F )\G(A))π⊗λ. Finally we have the Eisenstein series
which is defined by the following sum for g ∈ G(A),

E(ϕπ, λ, g) =
∑

γ∈P (F )\G(F )

λ.ϕπ(γg),

whenever it is absolutely convergent. The first thing to note is that for a fixed ϕπ there is an
open set in XG

M and a compact subset of G(F )\G(A) such that the Eisenstein series converges
(normally) [MW95, II.1.5].

If P = MU and P ′ = M ′U ′ are two standard parabolics of G such that their Levi’s are
conjugate, i.e. such that for w ∈ G(k) we have wMw−1 = M ′, then w maps P to wP, an orbit of
an irreducible representations of M to an orbit of irreducible representations of M ′. The Eisenstein
series is closely related through its constant terms (as discussed in section 5.2.3) to the following

M(w, π)(ϕπ)(g) =

∫
(U ′(F )∩wU(F )w−1)\U ′(A)

ϕπ(w
−1ug)du,

where π ∈ P, g ∈ G(A) and ϕπ ∈ A(U(A)M(F )\G(A))π.

The Eisenstein series has three inputs and can be considered as a function in different variables.
If π is a cuspidal automorphic representation of G(A) induced from P , then for a fixed ϕ ∈
A0(U(A)M(F ) \ G(A))π the Eisenstein series E(ϕ) can be thought of as a function from some
open subset of the cuspidal datum P into L2

loc(G), the set of locally square integrable complex
valued functions on G(A), given by

E(ϕ)(λ)(g) =
∑

γ∈P (F )\G(F )

λ.ϕ(γg), λ ∈ P, g ∈ G(A),

where it converges. The space L2
loc(G(A)) can be endowed with a Frechet space structure coming

from the semi-norms associated to compact sets C ⊆ G(A) given by

ϕ 7→ ‖ϕ|C‖L2 =

∫
C

|ϕ(x)|2dx.

Then it makes sense to talk about the holomorphicity of E(ϕ) in this sense (see [MW95, I.4.9] for
details). The key properties of both the Eisenstein series and the operator M(w, π) can be found
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in [MW95, IV.1.8, IV.1.9, IV.1.10, IV.1.11]. Most importantly as a function of P it can be shown
that they both have a meromorphic continuation to all of P. This was also given a second “soft
proof” more recently in [BL23], with the spectral decomposition that follows from it also being
worked out in [Del21]. Moreover an Eisenstein series attached to an automorphic form, at a point
p ∈ P at which it is holomorphic, is also an automorphic form.

4.2 Classical Eisenstein Series

We will follow the excellent exposition in [Gar16], the section [BVDGHZ08, 1.2] on classical Eisen-
stein series. The typical example of a classical Eisenstein series is that defined on s ∈ C by the
meromorphic continuation of the sum

E(z, s) ..=
1

2

∑
(m,n)∈Z2\{(0,0)}, coprime

Im(z)s

|mz + n|2s
, z ∈ H,

which converges absolutely for Re(s) > 1
2 . Consider the algebraic group SL2 with the parabolic of

upper triangular matrices P .
First we want to look at the index of the sum, we aim to define a map

ω : P (Z)\ SL2(Z) → {(m,n) ∈ Z2\{(0, 0)} : m,n are co-prime}.

The cosets of P (Z)\ SL2(Z) look like

P (Z)

(
a b

c d

)
=

{
±

(
1 n

1

)(
a b

c d

)
: n ∈ Z

}
=

{
±

(
a+ nc b+ nd

c d

)
: n ∈ Z

}
.

Moreover because

(
a b

c d

)
∈ SL2(Z) we have by Bezout’s lemma (applied to the determinant

expression) that c and d are co-prime. Therefore there is a well defined map

P (Z)\ SL2(Z) → {(m,n) ∈ Z2\{(0, 0)} : m,n are co-prime},

if we denote the indicator function 1(c < 0) then it is given by

ω :

{
±

(
a+ nc b+ nd

c d

)
: n ∈ Z

}
7→ (|c|, (−1)1(c<0)d).

The point is that |mz + n| = |(−m)z + (−n)| and so the sum in the Eisenstein series, having a
prefactor of a half is really just the sum over {(m,n) ∈ Z2\{(0, 0)} : m,n are co-prime and m ≥ 0},
which by our argument is in bijection with P (Z)\ SL2(Z) via ω.

Lemma 4.3 ( [Gar16], 3.5).

P (Z)\ SL2(Z) ∼= P (Q)\ SL2(Q).
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Proof. The bijection is explicitly

P (Z)g 7→ P (Q)g.

Recall that SL2(Z) acts via the Mobius transformations on the upper half plane. If z = x+iy ∈

H, s ∈ C and γ =

(
a b

c d

)
∈ SL2(Z) then an elementary computation shows that,

Im(γ.z) =
Im(z)

|cz + d|2
.

Hence the classical Eisenstein series is

E(z, s) ..=
1

2

∑
m,n∈Z\{(0,0)}, coprime

Im(z)s

|mz + n|2s
=

∑
γ∈P (Q)\ SL2(Q)

Im(γ.z)s,

Where these sum are notation for their own meromorphic continuation to the complex plane.
We want to realize this as the Eisenstein series associated to an automorphic form so first we

must design a function on SL2(A). For any place ν of Q we have the local Iwasawa decomposition
SL2(Qν) = P (Qν)Kν where

Kν
..=

SL2(Zν), ν non-Archimedean

SO2(R), ν Archimedean
,

are the local maximal compact subgroups. We define a function on the adeles by defining it on the
local pieces,

ϕν,s

((
a b

d

)
k

)
..=

∣∣∣a
d

∣∣∣s
ν
.

Finally we define ϕs as the map
(gν)ν 7→

∏
ν

ϕν,s(gν).

Lemma 4.4. ϕs is an automorphic form on P (Q)\SL2(A).

Proof. Smooth, moderate growth and K-finiteness are obvious from the definition. Using
the product formula, i.e. for all x ∈ Q× we have that

∏
ν |x|ν = 1, we get that ϕs is left P (Q)

invariant. Z(g) finiteness can be checked using the known Casimir of the Lie algebra of SL2(R),
which we again omit.

To this we have an Eisenstein series associate as in the adelic setting by

E(ϕ, g, s) ..=
∑

γ∈P (Q)\ SL2(Q)

ϕs(γg).

Lemma 4.5. Let g ∈ SL2(R) then we consider it as an element of SL2(A), denoted by ι(g), by
setting all other entries to 1. Then

E(ϕs, ι(g)) = E(g.i, s)
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Proof. First the left hand side,

E(ϕs, ι(g)) =
∑

γ∈P (Q)\ SL2(Q)

ϕs(γι(g))

=
∑

γ∈P (Z)\ SL2(Z)

∏
ν

ϕν,s(γgν)

=
∑

γ∈P (Z)\ SL2(Z)

ϕ∞,s(γg)
∏
ν<∞

ϕs,ν(γ)

=
∑

γ∈P (Z)\ SL2(Z)

ϕ∞,s(γg).

Because γ ∈ SL2(Z) ⊆ SL2(Zν) for each place ν and so ϕs,ν is by definition trivial on these.
The final step is then to show that

ϕ∞,s(g) = |Im(g.i)|s.

If

(
a b

c d

)
∈ SL2(R) then for some k ∈ SO2(R) we have that [Conc],

(
a b

c d

)
=

(
(a2 + c2)

1
2 ∗

(a2 + c2)−
1
2

)
k.

With this explicit Iwasawa decomposition the proof is finished with some elementary matrix
manipulation, this is done very explicitly in [Gar16, 3.3].



Chapter 5

Constant Terms of Eisenstein
Series

This section is a discussion of the adelic constant term, especially its application to the Eisenstein
series.

Through constant terms we can define cusp forms which play a central role in the theory of
automorphic forms. They appear historically as interesting examples such as the Ramanujan tau
function, by a theorem of Ribet [SZS77, T2.3] the Galois representation associated to a cusp form
is irreducible and they form the “base case” for proofs, for example the spectral decomposition
in [MW95].

Constant terms preserve analytic properties whilst sometimes reducing the functions to more
tractable forms..

5.1 Definition and Role

Consider P = MU a standard parabolic of a classical group G defined over a number field F and
ϕ : U(F ) \ G(A) → C a measurable and locally L1 function then its constant term along P is
defined to be [MW95, I.2.6],

ϕP : U(A) \G(A) → C,

ϕP (g) ..=

∫
U(k)\U(A)

ϕ(ug)du.

Example 5.1. Consider f a modular form of full level and weight k, which has a Fourier expansion
given by

f(z) =
∑
n≥0

ane
2πinz.

In section 2.3 we verified that

f̃

(
a b

c d

)
= (ci+ d)−kf

(ai+ b

ci+ d

)
,

is an Archimedean automorphic form on Sp2. The only non-trivial standard parabolic P is the one

27
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of upper triangular matrices, with Levi and unipotant given respectively

M =

(
m 0

0 m−1

)
∼= GL1, N =

(
1 b

0 1

)
∼= Ga,

along which we can then compute the constant term, defined analogously in the Archimedean setting

f̃P (m) =

∫
N(Z)\N(R)

f̃(mb)db

=

∫
Z\R

f̃

(
m mb

0 m−1

)
db

=

∫
Z\R

mkf(m2i+m2b)db

= mka0.

We have chosen normalisation to remove the usual factor of 1/2π in the constant term of the
Fourier series.

If ϕ is smooth or moderate growth then so is its constant term [MW95, I.2.6]. Moreover if
ϕ is an automorphic form on G(A) then its constant term along P is an automorphic form on
M(A) [GH24, 6.5].

Let ϕ be an automorphic form on U(A)M(k) \G(A) for P = MU a standard parabolic. Then
ϕ is cuspidal if for all standard parabolics P ′ ⊂ P we have that ϕP ′ is identically zero.

Theorem 5.2 ( [MW95], I.4.10). Let P = MU be a standard parabolic of G. If π is a cuspidal
automorphic representation induced from P (see section 3.2), then for a fixed ϕ ∈ A0(U(A)M(k) \
G(A))π the Eisenstein series E can be thought of as a function from some open subset of the
cuspidal datum P, the orbit of π (see section 4.1), into L2

loc(G(A)) given by

E(p)(g) =
∑

γ∈P (k)\G(k)

λ.ϕ(γg), p ∈ P, g ∈ G(A),

where it converges. If D ⊆ P, is an open subset minus a finite number of points on which E is
holomorphic then E has a holomorphic continuation to the finite number of points if and only if
the constant term of EQ has a holomorphic continuation to these finite number of points for all
standard parabolics Q.

Remark 5.3. The theorem in Moeglin and Waldspurger is proved in much more generality, however
after sufficient symbol pushing this is the essence.

So one can say that the poles of an Eisenstein series are controlled by its constant terms. We
can say more:

Theorem 5.4 ( [MW95], II.1.7). The constant term of an Eisenstein series induced from a standard
maximal parabolic P is zero along any other standard parabolic P ′ i.e. if P 6= P ′ then the constant
term of the Eisenstein series along P ′ is zero.

Putting these two theorems together we see that for an Eisenstein series induced from a maximal
parabolic P , it has a holomorphic continuation around a point if and only if its constant term along
P has a holomorphic continuation around that point.
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5.2 Constant Terms of Eisenstein Series

This computation forms the heart of a well known theorem, [GH24, Prop 10.4.2] [MW95, II.1.7]
[Sha10, 6.2]. Notice that the Eisenstein series has full G(F )-invariance and so we can take its
constant terms along any standard parabolic.

Also note that we assume the computations are taking place in the domain of P on which the
Eisenstein series is given by the sum formula. By the uniqueness of meromorphic continuation
taking constant terms commutes with meromorphic continuation.

5.2.1 In General

We will use the following Lemmas to give a simplified expression of the constant term of an
Eisenstein series. Let G be a classical group over a number field F, fix a Borel B and fix P = MU

and P ′ = M ′U ′ two standard maximal parabolics. Let E(x, ϕ, λ) be defined from P as in section
4.1.

If H is an algebraic group of the form H = G1 × G2 where both G1 and G2 are classical in
our sense then H is also split. Thus we can take any maximal split torus T ⊆ H and defined the
Weyl group of H

WH
..= NormH(F )T (F )/CentH(F )T (F ),

where H(F ) acts on T (F ) by conjugation. Note that this is independent of the choice of Torus.
Now as we have seen in section 1.2.1 the Levi subgroups of maximal parabolics of classical groups
are of the form G1×G2 for Gi classical groups. Thus we know how to talk about the Weyl groups
of Levis of maximal parabolics of classical groups.

Finally we will use the common technique of unfolding

Theorem 5.5 (Unfolding, [Gar18] 5.2, [Fol16] Thm 2.49). Let H ≤ G be a closed subgroup. If
H \G has a right G invariant measure then the integral is unique up to scalar, namely for a given
Haar measures dh on H and dg on G there is a unique invariant measure dq on H \ G such that
for all f ∈ C0

c (G) ∫
H\G

∫
H

f(hq)dhdq =

∫
G

f(g)dg.

Note that this quotient may not be a group, because H is not required to be normal. The use
of this lemma is called unfolding the integral.

Lemma 5.6.
P (F ) \G(F ) ∼=

∐
w∈WM′\WG/WM

P ′(F ) ∩ wP (F )w−1 \ P ′(F ).

Proof. Consider the Bruhat decomposition:

G(F ) =
∐

w∈WM′\WG/WM

P (F )w−1P ′(F ).

Then because the action of P (F ) keeps the disjoint sets disjoint we can move the quotient
through and get

P (F ) \G(F ) =
∐
w

P (F ) \ P (F )w−1P ′(F ).
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Analysing the summands, by the proof of the second isomorphism theorem for groups we have
a bijection

P (F ) \ P (F )w−1P ′(F ) ∼= P (F ) ∩ w−1P ′(F ) \ w−1P ′(F ).

Note that the group in the denominator still acts on w−1P ′(F ) on the left. Multiplication by
w is a bijection that sends for p′ ∈ P ′(F )

[w−1p′] = {pw−1p′ : p ∈ P (F ) ∩ w−1P ′(F )} ∈ P (F ) ∩ w−1P ′(F ) \ w−1P ′(F ),

to
{wpw−1p′ : p ∈ P (F ) ∩ w−1P ′(F )} ∈ wP (F )w−1 ∩ P ′(F )\P ′(F ).

Thus we have that

w(P (F ) ∩ P ′(F ) \ w−1P ′(F )) ∼= wP (F )w−1 ∩ P ′(F ) \ P ′(F ).

Lemma 5.7 ( [GH24], 10.4.1). There exists a set of representatives R for WM ′ \WG/WM such
that for w ∈ R we have w−1P ′w ∩M is a standard parabolic of M with Levi w−1M ′w ∩M and
unipotent w−1U ′w ∩M .

Lemma 5.8 ( [GH24], 10.4.1). For w ∈ R as above

w−1U ′w ∩ P = (w−1U ′w ∩M)(w−1U ′w ∩ U).

Lemma 5.9. Let m′ ∈ M ′(F ), u′ ∈ U ′(F ) then for w ∈ R as above,

m′u′ ∈ wP (F )w−1 ⇐⇒ m′ ∈ wP (F )w−1 and u′ ∈ (m′)−1wP (F )w−1m′.

Proof. The forward implication is stated in [GH24, Lem. 10.4.1], the converse follows
from some algebra: First let m′ = wp1w

−1 and u′ = (m′)−1wp2w
−1m′ for p1, p2 ∈ P (F ) then

m′u′ = m′(m′)−1wp2w
−1wp1w

−1

= wp2p1w
−1 ∈ wP (F )w−1.

Taking the contrapositive of this lemma will be used below. This is because our sums will be
over quotients like A \ B and therefore summing over the “elements” in B that are not in A; by
our lemma would be the same as summing over two different such quotients. Now we will apply
our lemmas to simplify and make more explicit the constant term of an Eisenstein series. Denote
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[U ′] ..= U ′(F ) \ U ′(A) and fix a set of representatives R for WM ′ \WG/WM as in lemma 5.7

EP ′(ϕ, λ, x) =

∫
U ′(F )\U ′(A)

E(ϕ, λ, nx)du

=

∫
[U ′]

∑
δ∈P (F )\G(F )

λ.ϕ(δnx)du

(Lemma 5.6) =

∫
[U ′]

∑
δ∈

∐
w∈R P ′(F )∩wP (F )w−1\P ′(F )

λ.ϕ(δux)du

=
∑
w∈R

∫
[U ′]

∑
p′∈P ′(F )∩wP (F )w−1\P ′(F )

λ.ϕ(w−1p′ux)du.

Now apply Lemma 5.9 to the above sum to see that it is equal to

∑
w

∑
m′∈M ′(F )∩wP (F )w−1\M ′(F )

∫
[U ′]

∑
u′∈U ′(F )∩(m′)−1wP (F )w−1m′\U ′(F )

λ.ϕ(w−1m′u′ux)du

(Change Var) =
∑
w

∑
m′

∫
[U ′]

∑
n′∈U ′(F )∩wP (F )w−1\U ′(F )

λ.ϕ(w−1u′um′x)du

(Unfold) =
∑
w

∑
m′

∫
U ′(F )∩wP (F )w−1\U ′(A)

λ.ϕ(w−1um′x)du.

The change of variables is (m′, u′) 7→ ((m′)−1u′m′, (m′)−1u′m′).

5.2.2 Constant Terms of Cuspidal Eisenstein Series

So if R is a set of representatives for WM ′ \WG/WM as given by lemma 5.7 we have seen so far
that

EP ′(ϕ, λ, x) =
∑
w∈R

∑
m′∈M ′(F )∩wP (F )w−1\M ′(F )

∫
U ′(F )∩wP (F )w−1\U ′(A)

λ.ϕ(w−1um′x)du.

Continuing the computation of the constant term above, we will focus purely on the inner integral
now ∫

U ′(F )∩wP (F )w−1\U ′(A)
λ.ϕ(w−1um′x)du

=

∫
w−1U ′(F )w∩P (F )\w−1U ′(A)w

λ.ϕ(uw−1m′x)du

(Lemma 5.8) =
∫
(w−1U ′w∩M)(w−1U ′w∩U)(F )\w−1U ′(A)w

λ.ϕ(uw−1m′x)du.

where the first equality is the change of variables w−1uw 7→ u. Denote A = (w−1U ′(F )w∩U(F ))\
w−1U ′(A)w. Unfolding we get the equality

=

∫
(w−1U ′(A)w∩M(A))\A

∫
w−1U ′(F )w∩M(F )\w−1U ′(A)w∩M(A)

λ.ϕ(u1u2w
−1m′x)du1du2.
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Now look at the inner integral here more closely∫
w−1U ′(F )w∩M(F )\w−1U ′(A)w∩M(A)

λ.ϕ(u1u2w
−1m′x)du1du2,

applying Lemma 5.7 we see that this is a constant term for a parabolic of M , of the function
m 7→ ϕ(mu2w

−1m′x). This was in complete generality. If we now assume further that the
Eisenstein series was induced from a cuspidal automorphic representation, then m 7→ ϕ(mk) is a
cusp form and therefore this last integral will vanish whenever w−1U ′w ∩ M 6= {1}, because in
that case the inner integral doesn’t exist (its over a point).

5.2.3 Constant Term Of Eisenstein Series for Conjugate Levis

If we now assume that M ′ = wMw−1 for w ∈ R and recall the definition of our intertwining
operator from section 4.1 we can use the following

Lemma 5.10 ( [MW95] II.1.7 (6)). For w ∈ R as above

U ′(k) ∩ wP (k)w−1 = U ′(k) ∩ wU(k)w−1,

to see that

EP ′(ϕ, λ, x) =
∑
w

∑
m′

∫
U ′(F )∩wP (F )w−1\U ′(A)

λ.ϕ(w−1um′x)du

=
∑
w

∑
m′

∫
U ′(k)∩wU(k)w−1\U ′(A)

λ.ϕ(w−1um′x)du

=
∑
w

∑
m′

M(w, π)(λ.ϕ)(x).

Recall that M was defined in section 4.1. In particular we can combine the conjugate and cuspidal
cases to get a much simpler expression for some constant terms of some Eisenstein series, we will
go through a detailed example in the final chapter 6.



Chapter 6

Poles of Residual Eisenstein Series

Our goal here is to exposit a small example that forms the heart of the work in papers such
as [Bre09] [JLZ13].

[Bre09] gave an analysis of the residual poles of Eisenstein series attached to Sp2n, there were
some minor errors that were corrected in [JLZ13] where they give essentially the same proof; theirs
however works for the other classical groups. To show the pattern we will focus on the case of
Sp2n, as an algebraic group defined over F a number field.

Theirs is a proof by induction and we will try to give the details of the base case, which is
simply an explicit computation of a constant term.

6.1 Residual Eisenstein Series

So for the rest of the chapter we will fix an n ∈ N and Gn = Sp2n, then we look at partitions of
n = r +m, where 1 ≤ r,m ≤ n and r,m ∈ Z. Then as we saw in section 1.2.1 there corresponds
a maximal standard (proper) parabolic of Sp2n, which we denote Pr = MrUr, such that the Levi
component is

GLr × Sp2m .

As we saw in section 4.2 the space of characters X
Sp2n

Mr
is one dimensional by the maximality of

Pr. We fix a τ , an irreducible unitary cuspidal automorphic representation of GLr. Now we take
an irreducible cuspidal automorphic representation σ of Sp2m, then the tensor product τ ⊗σ gives
a representation of GLr ×Sp2m and hence of the Levi Mr. We now consider the Eisenstein series
attached to this representation, namely if

ϕ ∈ A(Ur(A)Mr(F ) \ Sp2n(A))τ⊗σ,

then we have the Eisenstein series

E(ϕ, s)(g) =
∑

γ∈Pr(F )\Sp2n(F )

s.ϕ(γg),

for g ∈ Sp2n(F ) \ Sp2n(A). This is the base case of the setup in [JLZ13].

33
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6.2 The Constant Term

So far we only know how to do one thing with such Eisenstein series and that is compute their
constant term. We will compute the constant term along the maximal parabolic Pr = MrUr

because by [MW95, II.1.7 (ii)] the others are zero (see theorem 5.4).
By our earlier calculations in section 5.2, the fact that the tensor of cuspidal representations is

cuspidal (elementary) and [JLZ13] we know that

E(ϕ, s)Pr
=

∑
w∈WM′\WG/WM

∑
m′∈Mr(F )∩wPr(F )w−1\Mr(F )

∫
Ur(F )∩wPr(F )w−1\Ur(A)

λ.ϕ(w−1um′x)du.

By [JLZ13] the inner integral vanishes for all w 6= id, ω where ω ∈ WSp2n
, this element is computed

explicitly in [GRS11] and is

ω ..= (−1)r

 Ir

I

±Ir

 ,

where Ia is the a× a identity matrix. Note that the ± is there to make sure the matrix is in Sp2n

and will in general depend on n and r. Hence the first sum becomes over two elements and we
have

E(ϕ, s)Pr
= E(ϕ, s)Pr,id + E(ϕ, s)Pr,ω,

where

E(ϕ, s)Pr,w(x) =
∑

m′∈Mr(F )∩wPr(F )w−1\Mr(F )

∫
Ur(F )∩wPr(F )w−1\Ur(A)

s.ϕ(w−1um′x)du.

First the identity term simplifies

E(ϕ, s)Pr,id(x) =
∑

m′∈Mr(F )∩Pr(F )\Mr(F )

∫
Ur(F )∩Pr(F )\Ur(A)

s.ϕ(um′x)du

=
∑

m′∈Mr(F )\Mr(F )

∫
Ur(F )\Ur(A)

s.ϕ(um′x)du

=

∫
Ur(F )\Ur(A)

s.ϕ(ux)du

= s.ϕ(x)Pr
.

Note that because ϕ was an automorphic form that is U(A) invariant we have in particular that

s.ϕ(x)Pr
= s.ϕ(x).

Considering now the ω term

E(ϕ, s)Pr,ω(x) =
∑

m′∈Mr(F )∩ωPr(F )ω−1\Mr(F )

∫
Ur(F )∩ωPr(F )ω−1\Ur(A)

s.ϕ(ω−1um′x)du.

By [JLZ13, 2C] Mr(F )∩ωPr(F )ω−1\Mr(F ) is isomorphic to P0\Sp2(n−a), but P0 has Levi M0 =



6.2. THE CONSTANT TERM 35

Sp2(n−a) by definition and hence is itself Sp2(n−a). Thus the sum is over Sp2(n−a)(F )\Sp2(n−a)(F )

and hence is over a point. Therefore we get by definition of the intertwining operator

E(ϕ, s)Pr,ω(x) =

∫
Ur(F )∩ωPr(F )ω−1\Ur(A)

ϕ(ω−1ux)du = M(ω, s)(ϕ)(x),

because we took the constant term along the same parabolic as the definition of the Eisenstein
series we know that the Levis are (the same) conjugate. Thus we have shown that

E(ϕ, s)Pr = s.ϕ+M(ω, s)(ϕ).

Because ϕ is an automorphic form it has no poles and so we have shown the following:

Lemma 6.1 (Base case of [JLZ13], 2.1). The poles of E(ϕ, s) are exactly the poles of E(ϕ, s)Pa

(see section 5.1) which are exactly the poles of M(ω, s).

The poles of the M(w, s) function of of great interest due to their relation to L–functions. We
leave this to future work.



Appendix A

L-Functions

The theory of L-functions is not yet systematic; Langlands has provided a conjectural framework,
however it is still under construction. In the mean time there are two major “paradigms” for
constructing and proving theorems about L-functions, those are the Langlands-Shahidi type con-
structions and the Rankin-Selberg type constructions. General surveys can be found in [BC79, Part
2.III.2] [Sha10] [Cogd] [BCDS+04, 9, 10, 11] [Art].

The Rankin-Selberg type functions are surveyed in [Bum11]. The GLn ×GLm case is dealt
with in [Cogb]. For Rankin-Selberg L-functions of the form Sp2n ×GLm the theory (for generic
cuspidal representations) is worked out in [GRS98].

The Langlands-Shahidi paradigm is explained in [Sha90,Sha10].
We have by [Cogd] some properties uniquely determining L-functions for tempered representa-

tions. It is a conjecture that all generic representations are tempered, some work in this direction is
in [Sha11], under this hypothesis we can apply the theory of Rankin-Selberg and Ginzburg-Ralis to
explicitly construct global L-functions and prove theorems about them. In particular their analytic
properties are well understood in these cases from [Grb11,Coga]. Note that [Grb11] is conditional
on the unfinished work of Arthur [Art13].

A.1 The Langlands Framework

We follow closely Borels exposition in [BC79, Part 2, “Automorphic L-functions”] and [Sha10].
Given a reductive LAG G defined over C there is an associated root datum (X,Φ, X̂, Φ̂), where for
any choice of maximal torus we have X = Hom(T,Gm), X̂ = Hom(Gm, T ), and Φ, Φ̂ are the roots
and coroots of G with respect to T [Spr98, 7.4.3]. Then each reductive LAG G over a number
field F has the root datum that is associated to the base change of G to C, (X,Φ, X̂, Φ̂). By the
existence theorem [Spr98, 10] to the dual root datum (X̂, Φ̂, X,Φ) there is a LAG defined over
C that corresponds, we call this the dual group of G and we denote it Ĝ. It is possible through
the use of the root datum to specify a “cannonical” action of Gal(F̄ /F ) on Ĝ as in loc. cit. The
Langlands dual group is then the dual group semi-direct producted with the Gal(F̄ /F ) via this
action, which we omit

LG ..= ĜoGal(F̄ /F ).

Example A.1 (Classical Groups, [BCDS+04], 11.1). We have the following table

36
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G Ĝ
GLn GLn

SO2n+1 Sp2n
SO2n SO2n

Sp2n SO2n+1

If ν is a non-archimedean place of F, then Oν is a local ring and we denote qν the cardinality
of the residue field i.e. if pν is the unique maximal ideal of Oν then qν ..= [Oν : pν ]. Using
the Satake isomorphism, to each unramified representation of G(Fν) we can associate a conjugacy
class of LG, via some map call it c, and hence there is a way to apply a complex representation
r : LG → GLn(C) to unramified representations of G(Fν), details in [Sha10, 2]. Given such an
unramified representation of G(Fν), call it πν , the local automorphic L-function is then

Lν(s, πν , r) ..=
1

det
(
I − r(c(πν))q

−s
ν

) , s ∈ C.

In the global case we consider an irreducible automorphic representation π = ⊗νπν of G(A), and
a finite set of places of F , call it S, such that S contains all infinite places and for all ν /∈ S πν

is unramified. Recall that we denoted the Langlands dual of G defined over F by LG. We denote
the Langlands dual of G defined over Fν for ν /∈ S by LGFν

. If r is a finite dimensional complex
representation of LG then the embedding of Galois groups Gal(F̄ν/Fν) ↪→ Gal(F̄ /F ) induces a
map LGFν →L G along which we can pull r back, giving a representation rν of LGFν . Then the
partial global L-functions are defined to be

LS(s, π, r) ..=
∏
ν /∈S

L(s, πν , rν), s ∈ C.

Example A.2 (Standard Representations / Classical Groups). In the case of classical groups it
is common to see L-functions with only two entries e.g. if ρ is a representation of G = Sp2n then
you may see L(s, ρ). The reason is that there is a standard representation of the dual groups of
classical groups. Namely the standard representation of a matrix group inside GLm is the one that
sends g 7→ g. It is this representation that is to be taken for the dual group in this setting.

Example A.3 (Rankin-Selberg, [Cogb], 1.2, [AG91], Ch. 2 Example. 2). Let ν be a finite place of
Q and π, π′ be two unramified generic representations of GLn(Qν) and GLm(Qν) respectively. Let
Bn be the standard Borel of upper triangular matricies in GLn. Such representations have been
classified in terms of characters of Q×

ν , in particular for π there are µ1, ..., µn unramified characters
such that

π ∼= Ind
GLn(Qν)
B(Qν)

(
µ1 ⊗ · · · ⊗ µn

)
.

If we fix a uniformizer $ of Qν then we have the so called “Satake parameters” µi($) which
determines π uniquely. Of course the same is true for π′, with say characters µ′

1, ..., µ
′
m. We then

define
L(s, π × π′) ..=

∏
i,j

1

1− µi($)µ′
j($)q−s

.

Consider the group G = GLn ×GLm which has dual GLn(C) × GLm(C), then there is a
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cannonical representation
⊗ : GLn(C)×GLm(C) → GLnm(C).

Then
L(s, π ⊗ π′,⊗) = L(s, π × π̃′),

where the tilde denotes the contragradient.



Appendix B

Direct Integrals

B.1 Of Spaces

Consider a countable collection of Hilbert spaces (Hα)α∈A then their direct sum is defined to be

⊕
α

Hα
..=

{
(hα) ∈

∏
α

Hα :
∑
α

‖hα‖2α < ∞

}

i.e. square summable sequences from the product. This is to ensure that the resulting space is
still complete. If we recall that summing over a countable set is the same as integrating over that
countable set when we equip it with the counting measure and discrete sigma algebra then this
can be re-written as ⊕

α

Hα =

{
(hα) ∈

∏
α

Hα :

∫
A

‖hα‖2αdα < ∞

}

This definition can be obviously generalised to an indexing set that is now an arbitrary mea-
sure space, (A,M, µ). We need to make some technical arrangment to accompany this change,
namely ensureing everything agrees with the measure structure, if we’re to integrate we better only
integrate measurable things. So now a collection (Hα)α∈A along with a countable set of elements
ej ∈

∏
α Hα, j ≥ 1 is called a measurable field over A if

∀j, k ≥ 1 α 7→ 〈ej(α), ek(α)〉

is measurable and for each α ∈ A

span{ej(α)}∞j=1 ⊆ Hα

is dense; fixing an α and varying the j form a basis of each of the hilbert spaces, fixing the indecies
and variying the α is measurable. An element f ∈

∏
α Hα is called a measurable vector field if

∀j α 7→ 〈f(α), ej(α)〉α

is a measurable function. Note that we consider elements of the potentially uncountable product
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as functions from the indexing set into the relevant space (functions into the union of the hilbert
spaces satisfying the property that f(α) ∈ Hα). Now we define

∫ ⊕
Hαdµ(α) ..=

{
f ∈

∏
α

Hα : f is measurable and
∫
A

‖f(α)‖2α < ∞

}

Indeed this forms a Hilbert space. Note that a priori this construction depended on the basis (ej)

that we picked but up to isomorphism the basis doesnt matter.

B.2 Of Operators

We want to decompose representations and so we should look at how operators fit into this picture.
We call an element

T ∈
∏
α

L(Hα)

a field of operators on A. It defines a linear map from
∏

α Hα to itself via(∫ ⊕
T

)
(f)(α) ..= T (α)(f(α))

We say that it is measurable if for all measurable vector fields f the function

α 7→
(∫ ⊕

T

)
(f)(α)

is measurable. If moreover ess supα‖T (α)‖ < ∞ then
∫ ⊕

T defines a bounded operator on
∫ ⊕ Hα.

B.3 Of Representations

Now we consider a group G and a collection of unitary represntations πα on Hα such that for every
α and every x ∈ G

α 7→ πα(x)

is a measurable field of operators. We call such a collection a measurable field of representations; a
G indexed collection of measurable fields of operators. From a measurable field of representations
we get a unitary representation

π(x) ..=

∫ ⊕
πα(x)

of G on
∫ ⊕ Hα which we call the direct integral of representations.

Theorem B.1. If G is a second countable LCH group and π is a unitary rep of G on a seperable
Hilbert space H and B is some (weakly closed) C∗ subalgebra of Hom(π, π) then π is unitarily
equivilent to the direct integral of some representations, which moreover act diagonally on the
conjugation of B by the unitary isomorphism.

So there is some measure space and measurable field of representations that can be combined to
get almost any unitary representation, however we would like to know what these measure spaces
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are, how they interact with the irreps etc.
Note that one of the major peices of the proof is indeed ?? and hence one is justified in calling

such a decomposition of the representation spectral, this direct integral is indeed a generalisation
of our direct sum after all.
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